顶部横幅广告
  • 微信
您当前的位置:首页 > 技术学习 > 随心学习

Hadoop集群搭建第一课——认识hadoop

作者:石德生 时间:2022-04-24 阅读数:人阅读文章来源:网络

Hadoop是一个由Apache基金会所开发的分布式系统基础架构。用户可以在不了解分布式底层细节的情况下,开发分布式程序。充分利用集群的威力进行高速运算和存储。Hadoop实现了一个分布式文件系统( Distributed File System),其中一个组件是HDFS(Hadoop Distributed File System)。HDFS有高容错性的特点,并且设计用来部署在低廉的(low-cost)硬件上;而且它提供高吞吐量(high throughput)来访问应用程序的数据,适合那些有着超大数据集(large data set)的应用程序。HDFS放宽了(relax)POSIX的要求,可以以流的形式访问(streaming access)文件系统中的数据。Hadoop的框架最核心的设计就是:HDFS和MapReduce。HDFS为海量的数据提供了存储,而MapReduce则为海量的数据提供了计算。

Hadoop起源于Apache Nutch项目,始于2002年,是Apache Lucene的子项目之一 [2]  。2004年,Google在“操作系统设计与实现”(Operating System Design and Implementation,OSDI)会议上公开发表了题为MapReduce:Simplified Data Processing on Large Clusters(Mapreduce:简化大规模集群上的数据处理)的论文之后,受到启发的Doug Cutting等人开始尝试实现MapReduce计算框架,并将它与NDFS(Nutch Distributed File System)结合,用以支持Nutch引擎的主要算法。

HAdoop的注意优点:

1.高可靠性。Hadoop按位存储和处理数据的能力值得人们信赖
2.高扩展性。Hadoop是在可用的计算机集簇间分配数据并完成计算任务的,这些集簇可以方便地扩展到数以千计的节点中
3.高效性。Hadoop能够在节点之间动态地移动数据,并保证各个节点的动态平衡,因此处理速度非常快
4.高容错性。Hadoop能够自动保存数据的多个副本,并且能够自动将失败的任务重新分配
5.低成本。与一体机、商用数据仓库以及QlikView、Yonghong Z-Suite等数据集市相比,hadoop是开源的,项目的软件成本因此会大大降低

Hadoop大数据处理的意义:

Hadoop得以在大数据处理应用中广泛应用得益于其自身在数据提取、变形和加载(ETL)方面上的天然优势。Hadoop的分布式架构,将大数据处理引擎尽可能的靠近存储,对例如像ETL这样的批处理操作相对合适,因为类似这样操作的批处理结果可以直接走向存储。Hadoop的MapReduce功能实现了将单个任务打碎,并将碎片任务(Map)发送到多个节点上,之后再以单个数据集的形式加载(Reduce)到数据仓库里。

本站部分文章、数据、图片来自互联网,一切版权均归源网站或源作者所有。

如果侵犯了你的权益请来信告知我们删除。邮箱:1737618317@qq.com

标签:hadoop
微信

石德生

当你还撑不起你的梦想时,就要去奋斗。如果缘分安排我们相遇,请不要让她擦肩而过。我们一起奋斗!

微信
上云折上折

猜你喜欢

    无相关信息